# AGRICULTURAL AND FOOD CHEMISTRY

## Protein Glycation Inhibitory and Antioxidative Activities of Some Plant Extracts in Vitro

HYE YOUNG KIM\* AND KYONG KIM

Food Function Research Division, Korea Food Research Institute, San 46-1 Baekhyun-dong, Bundang-gu, Songnam-si, Kyonggi-do 463-420, Republic of Korea

The protein glycation inhibitory activity of aqueous ethanolic extracts from 25 plant tissues was evaluated in vitro using the model system of bovine serum albumin and fructose. The most bioactive plant tissue was *Allium cepa* (skin), followed by *Illicium religiosum* (bark and wood), *Fagopyrum esculentum* (hull), *Origanum officinalis* (leaf), *Rosmarinus officinalis* (leaf), *Pyrus pyrifolia* (bark), *Acanthopanax senticosus* (bark), *Eugenia caryophllata* (leaf), and *Erigeron annuus* (whole). The extracts with glycation inhibitory activity also showed antioxidative activity when a micellar linoleic acid peroxidation system was applied followed by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging assays. The glycation inhibitory activity was significantly correlated with the antioxidative potency of the extracts. The positive glycation inhibitory and antioxidative activities of these plants might suggest a possible role in targeting aging and diabetic complications.

KEYWORDS: Plants; protein glycation inhibition; antioxidation

### INTRODUCTION

The accumulation of the reaction products of protein glycation (nonenzymatic reaction of proteins with glucose and other reducing sugars) in living organisms leads to structural and functional modifications of tissue proteins. Many studies have shown a significant role for glycation in the progress of normal aging and the pathogenesis of age-related diseases, such as diabetes, atherosclerosis, end-stage renal disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore, targeting glycation should have a broad and beneficial effect on aging and age-related diseases. Aminoguanidine, a small hydrazine-like compound, has been synthesized and become one of the most promising pharmacological interventions for glycation inhibition (1-3).

Besides synthesized compounds, plants might offer a new source of glycation inhibitory agents. The extracts of *Garcinia indica* (4), spices (5), and green tea (6, 7) have been reported to inhibit glycation. Some medicinal plants and common botanicals were collected from Korea. Aqueous ethanolic extracts of the plants were tested in a model system. Albumin was selected as a model protein, because it is a key protein found abundantly in human plasma, lymph, and humors throughout the body's essential organs. Under normal conditions albumin is glycated, and this process has been promoted by aging or diabetes. The nature of the reducing sugars influences the rate and extent of the glycation. Fructose instead of glucose was included in our study, because fructose is present in tissues

at a concentration comparable to that of glucose and reacts with protein  $\sim 10$  times more rapidly than glucose (8).

Protein glycation has been associated with the presence of increased oxidative damage in tissues (9-13). However, it has not been known exactly how glycation affects oxidative stress and vice versa. Recently, it has been reported that glycation generated active centers for catalyzing one-electron oxidation—reduction reactions and that glycated proteins accumulated in vivo provided stable active sites for catalyzing the formation of free radicals (14). It has also been suggested that inhibitors of mitochondrial superoxide generation completely prevented hyperglycemia-induced glycation in cultured bovine aortic endothelial cells and that mitochondrial superoxide initiated intracellular glycation (15). In our study, the antioxidative activity of the plant extracts was also tested in vitro, and the relationship to glycation was discussed.

#### MATERIALS AND METHODS

Plant Materials. Some medicinal plants (Illicium religiosum, Pyrus pyrifolia, Erigeron annuus, Euonymus allata, Phellodendron amjrense, Torreya nucifera, and Thuja orientalis) were collected from wild forests throughout Korea during the months of April–October of 2000, botanically identified, and air-dried in a sunless place. Voucher specimens have been deposited in the laboratory of the Korea Food Research Institute. The other medicinal plants cultivated in Korea (Acanthopanax senticosus, Paeonia suffruticosa, Paeonia lactiflora, Eucommia ulmoides, Cornus officinalis, Saururus chinensis, and Schizandra chinensis), some common botanicals cultivated in Korea (Allium cepa, Origanum saltiva, and Camellia sinensis), some imported spices (Origanum officinalis, Rosmarinus officinalis, Eugenia caryophlata, Thymus vulgaris, Laurus nobilis, and Cinamomum cassia) were

<sup>\*</sup> Corresponding author (e-mail khyey@kfri.re.kr; telephone +82-31-780-9267; fax +82-31-780-9234).

 Table 1. Effects of Plant Extracts on Fluorescence Formation in the BSA-Fructose Reaction in Vitro

| no. | family            | plant name                  | tissue used | concn (µg/mL) | RFI <sup>a</sup> (AU)                   | inhibition <sup>b</sup> (%)      | IC <sub>50</sub> <sup>c</sup> (µg/mL) |
|-----|-------------------|-----------------------------|-------------|---------------|-----------------------------------------|----------------------------------|---------------------------------------|
|     | control (d water) |                             |             |               | $1.08\pm0.02$                           |                                  |                                       |
|     | control (DMSO)    |                             |             |               | $1.00 \pm 0.00$                         |                                  |                                       |
| 1   | Liliaceae         | Allium cepa                 | skin        | 50            | 31 ± 0.01**                             | $69.5 \pm 4.0$                   | $16.8 \pm 5.0s$                       |
|     |                   |                             |             | 100           | $0.28 \pm 0.02^{\circ}$                 | $71.0 \pm 3.9$                   |                                       |
| 2   | Magnoliaceae      | Illicium religiosum         | bark        | 200           | $0.11 \pm 0.01$<br>$0.40 \pm 0.02^{**}$ | $89.8 \pm 3.3$<br>66.2 + 1.0     | $25.6 \pm 4.7$ rs                     |
| Z   | waynonaceae       | micium rengiosum            | Daik        | 100           | $0.40 \pm 0.02$<br>0.19 + 0.02***       | $83.8 \pm 1.0$                   | 20.0 ± 4.715                          |
|     |                   |                             |             | 200           | $0.12 \pm 0.02^{**}$                    | $90.0 \pm 2.4$                   |                                       |
| 3   | Polygonaceae      | Fagopyrum esculentum        | hull        | 50            | $0.48 \pm 0.01^{**}$                    | $53.0 \pm 0.92$                  | $39.0 \pm 3.02$ g                     |
|     | 55                | 515                         |             | 100           | $0.34 \pm 0.02^{**}$                    | $66.9 \pm 1.89$                  |                                       |
|     |                   |                             |             | 200           | $0.05 \pm 0.02^{**}$                    | $94.5\pm1.02$                    |                                       |
| 4   | Labiatae          | Origanum officinalis        | leaf        | 50            | $0.48 \pm 0.01^{***}$                   | $52.9\pm0.65$                    | $41.4 \pm 1.74$ pq                    |
|     |                   |                             |             | 100           | $0.20 \pm 0.04^{***}$                   | 80.6 ± 3.17                      |                                       |
| F   | N 4               | //// - / ///                |             | 200           | $0.06 \pm 0.04^{***}$                   | $94.3 \pm 3.67$                  | 44 E + 4 00                           |
| 5   | Magnollaceae      | illicium religiosum         | WOOd        | 50            | $0.60 \pm 0.06^{-10}$                   | 49.7±3.7<br>725±2.0              | $46.5 \pm 4.800$ pq                   |
|     |                   |                             |             | 100           | 0.33 ± 0.03                             | /2.3 ± 2.8<br>94.2 ± 1.2         |                                       |
| 6   | Lahiatao          | Rosmarinus officinalis      | leaf        | 200           | $0.19 \pm 0.02$<br>0.11 + 0.08**        | 04.3 ± 1.2<br>53 1 + 0 15        | 48.5 ± 0.350ng                        |
| 0   | Labiatac          | Rosmannus omenans           | icai        | 100           | $0.41 \pm 0.00$<br>0.35 + 0.01***       | $65.5 \pm 0.43$                  | 40.5 ± 0.550pq                        |
|     |                   |                             |             | 200           | $0.08 \pm 0.01^{***}$                   | $92.2 \pm 0.72$                  |                                       |
| 7   | Rosaceae          | Pyrus pyrifolia             | bark        | 50            | 0.67 ± 0.02**                           | $46.0 \pm 1.1$                   | $49.6 \pm 16.5 mp$                    |
|     |                   | 5 15                        |             | 100           | $0.47 \pm 0.05^{**}$                    | $62.2 \pm 2.8$                   |                                       |
|     |                   |                             |             | 200           | $0.42 \pm 0.03^{**}$                    | $66.6\pm3.5$                     |                                       |
| 8   | Araliaceae        | Acanthopanax senticosus     | bark        | 50            | $0.37 \pm 0.02^{***}$                   | $47.3 \pm 4.1$                   | $50.8\pm3.4$ no                       |
|     |                   |                             |             | 100           | $0.32 \pm 0.09^{**}$                    | $60.0 \pm 3.2$                   |                                       |
|     |                   |                             |             | 200           | 0.47 ± 0.09**                           | 65.9 ± 1.4                       |                                       |
| 9   | Myrtaceae         | Eugenia caryophilata        | leat        | 50            | $0.54 \pm 0.01^{\circ\circ}$            | 46.6 ± 0.79                      | $55.9 \pm 0.54$ mn                    |
|     |                   |                             |             | 100           | $28 \pm 0.00^{\circ\circ\circ}$         | $72.2 \pm 0.33$                  |                                       |
| 10  | Compositao        | Erigoron annuus             | whole       | 200           | $0.00 \pm 0.01$<br>0.52 ± 0.09**        | $100 \pm 3.43$                   | 566±65mn                              |
| 10  | Compositae        | Engeron annuus              | WIDE        | 100           | $0.03 \pm 0.00$<br>0.29 + 0.001***      | $45.0 \pm 0.1$<br>70.3 + 0.1     | 50.0 ± 0.5mm                          |
|     |                   |                             |             | 200           | 0.27 ± 0.001<br>0***                    | $100 \pm 0.1$                    |                                       |
| 11  | Ranunculaceae     | Paeonia suffruticosa        | root        | 50            | $0.76 \pm 0.05^{**}$                    | $36.5 \pm 2.9$                   | $63.9 \pm 0.8$ lm                     |
|     |                   |                             |             | 100           | $0.30 \pm 0.13^{*}$                     | 74.7 ± 7.6                       |                                       |
|     |                   |                             |             | 200           | 0***                                    | $100 \pm 0.0$                    |                                       |
| 12  | Labiatae          | Thymus vulgaris             | leaf        | 50            | $0.70 \pm 0.10^{**}$                    | $29.6\pm9.87$                    | $85.0 \pm 13.9 k$                     |
|     |                   |                             |             | 100           | $0.42 \pm 0.04^{***}$                   | $58.0\pm3.66$                    |                                       |
|     |                   |                             |             | 200           | $0.22 \pm 0.01^{***}$                   | $78.8\pm0.60$                    |                                       |
| 13  | Gramineae         | Oryza sativa var. Suwon 415 | seed        | 50            | $0.63 \pm 0.2^{*}$                      | $38.3 \pm 0.7$                   | $92.5 \pm 3.2$ jk                     |
|     |                   |                             |             | 100           | $0.47 \pm 0.01^{\circ}$                 | $54.0 \pm 0.3$                   |                                       |
| 14  | Daooniacoao       | Pagania lactiflora          | root        | 200           | $0.26 \pm 0.02$<br>0.95 ± 0.02**        | /3.0±0./<br>207±11               | 045 + 2 2                             |
| 14  | Paeullaceae       | Paeunia lacinora            | 1001        | 100           | 0.65 ± 0.02<br>0.66 ± 0.05**            | $20.7 \pm 1.1$<br>$45.1 \pm 3.0$ | 94.0 ± 3.2J                           |
|     |                   |                             |             | 200           | $0.00 \pm 0.03$<br>0.20 + 0.01***       | $43.1 \pm 3.0$<br>83 3 + 0 5     |                                       |
| 15  | Theaceae          | Camellia sinensis           | leaf        | 50            | $0.67 \pm 0.03$                         | $31.1 \pm 10.8$                  | 97.9 + 18.9ii                         |
|     |                   |                             |             | 100           | $0.47 \pm 0.06$                         | $52.4 \pm 4.7$                   |                                       |
|     |                   |                             |             | 200           | $0.21 \pm 0.08^{*}$                     | 79.7 ± 2.2                       |                                       |
| 16  | Lauraceae         | Laurus nobilis              | leaf        | 50            | $0.67 \pm 0.05^{***}$                   | $33.6\pm5.25$                    | $105\pm8.19$ hi                       |
|     |                   |                             |             | 100           | $0.52 \pm 0.01^{***}$                   | $48.4\pm0.56$                    |                                       |
|     |                   |                             |             | 200           | $0.36 \pm 0.00^{***}$                   | $64.4 \pm 0.09$                  |                                       |
| 17  | Eucomimiaceae     | Eucommia ulmoides           | leaf        | 50            | $0.85 \pm 0.02^{*}$                     | $16.6 \pm 1.0$                   | $109.7 \pm 2.5h$                      |
|     |                   |                             |             | 100           | $0.42 \pm 0.31$                         | $58.4 \pm 4.6$                   |                                       |
| 10  | Coloctracopo      | Euonymus alata              | root        | 200           | $0.34 \pm 0.02$                         | $05.5 \pm 2.9$                   | $110.0 \pm 1.4a$                      |
| 10  | Celasilaceae      | Luonymus alata              | 1001        | 100           | $0.34 \pm 0.08$<br>0.12 + 0.07**        | $40.0 \pm 3.7$<br>$17.2 \pm 5.4$ | 110.7 ± 1.49                          |
|     |                   |                             |             | 200           | $0.42 \pm 0.07$<br>0.35 + 0.04**        | $565 \pm 54$                     |                                       |
| 19  | Cornaceae         | Cornus officinalis          | fruit       | 50            | $0.92 \pm 0.03^{*}$                     | $40.0 \pm 3.7$                   | 158.0 ± 10.9ef                        |
|     |                   |                             |             | 100           | $0.64 \pm 0.00^{**}$                    | $47.2 \pm 5.4$                   |                                       |
|     |                   |                             |             | 200           | $0.44 \pm 0.05^{*}$                     | $56.5 \pm 5.4$                   |                                       |
| 20  | Rutaceae          | Phellodendron amjrense      | leaf        | 50            | $1.06 \pm 0.12$                         | $14.6\pm7.0$                     | $160.0 \pm 0.8 \text{ef}$             |
|     |                   |                             |             | 100           | $1.02\pm0.01^{\star}$                   | $17.7\pm0.8$                     |                                       |
| _   | _                 | _                           |             | 200           | $0.38 \pm 0.02^{**}$                    | $69.2 \pm 1.4$                   |                                       |
| 21  | Гахасеае          | Torreya nucifera            | leaf        | 50            | 0.83 ± 0.05*                            | $18.5 \pm 3.5$                   | $166.1 \pm 0.8 de$                    |
|     |                   |                             |             | 100           | 0.53 ± 0.003**                          | $47.7 \pm 0.3$                   |                                       |
| 22  | 0                 | Thuis anis-t-l'-            | leof        | 200           | $0.51 \pm 0.001^{*}$                    | $50.2 \pm 0.1$                   | 170.0 - 0.0 -                         |
| 22  | Cypressaceae      | i nuja orientalis           | lear        | 50            | $0.71 \pm 0.05^{\circ}$                 | $21.8 \pm 3.5$                   | $170.0 \pm 2.0d$                      |
|     |                   |                             |             | 200           | 0.03 ± 0.05<br>0.42 ± 0.05**            | ンU.I エ 3.9<br>56 Q + 2 A         |                                       |
| 23  | Saururaceae       | Saururus chinensis          | leaf        | 50            | $0.42 \pm 0.05$<br>$0.75 \pm 0.19$      | $25.0 \pm 3.0$<br>$25.2 \pm 0.9$ | 174.5 + 8.1cd                         |
| 25  |                   | Gaararag Grimoligig         | icui        | 100           | $0.70 \pm 0.2$                          | $27.8 \pm 1.7$                   | 177.0 ± 0.160                         |
|     |                   |                             |             | 200           | $0.41 \pm 0.08$                         | $58.6 \pm 2.0$                   |                                       |
|     |                   |                             |             |               |                                         |                                  |                                       |

Table 1 (Continued)

| no. | family         | plant name           | tissue used | concn (µg/mL) | RFI <sup>a</sup> (AU)              | inhibition <sup>b</sup> (%) | IC <sub>50</sub> <sup>c</sup> (µg/mL) |
|-----|----------------|----------------------|-------------|---------------|------------------------------------|-----------------------------|---------------------------------------|
| 24  | Lauraceae      | Cinamomum cassia     | bark        | 50            | $0.80\pm0.02$                      | $19.2 \pm 1.6$              | $182.7 \pm 10.1c$                     |
|     |                |                      |             | 100           | $0.58 \pm 0.23$                    | $31.6 \pm 4.0$              |                                       |
|     |                |                      |             | 200           | $0.43 \pm 0.03$                    | $53.7 \pm 1.3$              |                                       |
| 25  | Magnoliaceae   | Schizandra chinensis | fruit       | 50            | $0.83 \pm 0.03^{*}$                | $17.5 \pm 1.5$              | $352.4 \pm 2.5a$                      |
|     |                |                      |             | 100           | $0.65 \pm 0.27$                    | $25.2 \pm 8.2$              |                                       |
|     |                |                      |             | 200           | $0.54 \pm 0.24$                    | $36.5 \pm 8.2$              |                                       |
|     | aminoguanidine |                      |             | 50            | $0.43 \pm 0.00^{***}$              | $60.6 \pm 0.2$              | $27.7 \pm 3.2r$                       |
|     | -              |                      |             | 100           | $0.29 \pm 0.1^{**}$                | $72.9 \pm 0.0$              |                                       |
|     |                |                      |             | 200           | $0.024 \pm 0.04^{\star\star\star}$ | $97.8\pm2.2$                |                                       |

<sup>*a*</sup> Relative fluorescence intensity. The fluorescence intensity was measured at ex 370 nm and em 440 nm. The intensity of each blank (without fructose) was subtracted from the intensity of each sample. AU means arbitrary unit. <sup>*b*</sup> Percentage inhibition was determined as follows: inhibition (%) = 100 – [fluorescence intensity (sample) – fluorescence intensity (blank of sample)] × 100/[fluorescence intensity (control) – fluorescence intensity (blank of control)]. <sup>*c*</sup> Concentration of an inhibitor required to inhibit 50% of the control. Calculated from linear regression equation in semilogarithmic manner. \*, *p* < 0.05; \*\*, *p* < 0.01; \*\*\*, *p* < 0.001 vs control. Values with different letters in a column are significantly different (*p* < 0.05).

purchased in dried form at commercial markets. All of the plant tissues were powdered with a grinder.

**Preparation of Extract.** The powdered tissue was extracted with ethanol/water (50:50, v/v) at a ratio of 20 mL/g for 2 h at room temperature three times, followed by filtration with filter papers (Toyo no. 2 and 4, Advantec). The combined filtrate was concentrated in a rotary vacuum evaporator ( $T \le 40$  °C) until all extraction solvent was completely removed so that solid residue was obtained. The residue was dissolved in dimethyl sulfoxide (DMSO) and used for subsequent bioassays.

**Protein Glycation.** The procedure followed that of McPherson et al. (*16*) and was modified. Bovine serum albumin (BSA; 10 mg/mL) was incubated with D-fructose (250 mM) in potassium phosphate buffer (200 mM; pH 7.4). DMSO used for dissolving the residue was found to have no effect on the reaction at <2% (v/v). All of the reagents and extracts were sterilized by filtration through 0.2  $\mu$ m membrane filters, and the mixture was incubated at 37 °C in 5% CO<sub>2</sub> in air for 6 days. The fluorescence intensity was measured at an excitation of 370 nm and an emission of 440 nm with a spectofluorometer (Aminco Bowman). Aminoguanidine (Sigma Chemical Co.) dissolved in distilled water was also tested as a known inhibitor.

Antioxidant Activity. *Fluorescent Lipid Peroxidation*. One hundred millimolar methyl linoleate were emulsified in a 40 mM glycine/0.3% (w/v) Tween 20 solution by sonication under ice-cold conditions. Twenty microliters (a  $^{1}/_{50}$  volume) of the dried residue in DMSO was added to 1 mL of the emulsion. The mixture was incubated at 50 °C for 1 week, after which time the fluorescent product was extracted with a 6-fold volume of ethanol/diethyl ether (3:1) and the fluorescence intensity measured (excitation at 335 nm, emission at 430 nm) with a spectrofluorometer (*17*).

2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) Radical Cation (ABTS<sup>+</sup>) Decolorization Assay. The preformed ABTS<sup>+</sup> was generated by oxidation of 7 mM ABTS with 2.45 mM potassium persulfate and reduced in the presence of the plant extracts. After the addition of 990  $\mu$ L of diluted ABTS<sup>+</sup> solution (A<sub>734nm</sub> = 0.700 ± 0.020) to 10  $\mu$ L of the plant extracts in ethanol, the absorbance reading was taken at 30 °C exactly 1 min after initial mixing and up to 6 min (18).

Free Radical Scavenging Activity on 1,1-Diphenyl-2-picrylhydrazyl (DPPH). For 20  $\mu$ L of each extract residue in methanol, 98  $\mu$ M DPPH was added in methanol of a total volume of 1 mL. Five minutes later, the absorbance was measured at 517 nm. The radical scavenging activity was calculated as a percentage of DPPH decolorization compared to the control (19).

Analysis of Total Phenolic Content. The concentration of total phenolics in the plant extract was estimated using the Folin–Ciocalteu reagent (20). Aliquots of 0.1 mL of the extract residue dissolved in DMSO (0.1 mg/mL) was added in a test tube with 0.5 mL of Folin–Ciocalteu reagent and mixed thoroughly. After an interval of 3 min, 0.5 mL of 10% Na<sub>2</sub>CO<sub>3</sub> solution was added, and the mixture was allowed to stand for 1 h at room temperature. The absorbance of the mixture was measured at 760 nm. A standard curve using gallic acid was also prepared. Results were expressed as milligrams per gram of extract of gallic acid equivalents.

Analysis of Total Flavonoid Content. Aliquots of 0.5 mL of the extract residue dissolved in DMSO (0.1 mg/mL) were added to equal volumes of a solution of 2% AlCl<sub>3</sub>• $6H_2O$  (2 g in 100 mL of ethanol). The mixture was vigorously shaken, and absorbance was read at 365.7 nm after 10 min at room temperature. Flavonoid contents were expressed in milligrams of quercetin equivalent per gram of extract (21).

Analysis of Ascorbic Acid Content. The ascorbic acid contents in the plant extract residue were analyzed using HPLC with a 900 series binary pump, an autosampler, and a diode array detector (Jasco Corp.) linked to a Borwin data handling system. Reversed phase separations were carried out at room temperature using a  $4.5 \times 150$  mm i.d.,  $5 \mu$ m XTerra RP<sub>18</sub> column (Waters, Milford, MA). Solvent A was 100% methanol, and solvent B was 50 mM potassium phosphate buffer (pH 6.7). Initial condition was 0% A; 0–6 min, 0% A; 6–13 min, 20% A; 13–15 min, 20% A; 15–17 min, 80% A; and back to the initial condition eluted at flow rate of 1 mL/min. L-Ascorbic acid was detected at 270 nm and identified according to the retention times and UV spectra of standards (22).

Analysis of Organic Acid Content. The standard materials of such organic acids, that is, oxalic acid, citric acid, malic acid, malonic acid, succinic acid, formic acid, and acetic acid, were purchased from Sigma (St. Louis, MO). All organic acids were determined by ion exchange HPLC analysis system (Jasco Corp.). Conditions for the ion exchange column were as follows: Bio-Rad Aminex HPX-87H,  $300 \times 7.8$  mm; elution, 0.01 N sulfuric acid solution; flow rate, 0.6 mL/min; volume of sample solution injected,  $20 \ \mu$ L; detector, UV 210 nm (23).

**Statistical Analysis.** Experiments were performed in duplicate and replicated three times. All values were expressed as mean and standard deviation (SD). Student's t test, Duncan's multiple-range test, and correlation analysis program in the SAS (24) were used for statistical analysis.

#### **RESULTS AND DISCUSSION**

In this study we tested extracts of 25 plant tissues for their inhibitory activity on protein glycation (**Table 1**). Twenty-two extracts inhibited the reaction >50% at 200  $\mu$ g of dried extract residue/mL, inhibited significantly at concentrations of 50, 100, and 200  $\mu$ g/mL, and sustained dose dependency. The most active extract was that of *A. cepa* (skin). Its IC<sub>50</sub> value was 16.8  $\mu$ g/mL and lower than that of aminoguanidine at 27.7  $\mu$ g/mL. *I. religiosum* (bark) was the second most bioactive extract followed by *Fagopyrum esculentum* (hull), *O. officinalis* (leaf), *I. religiosum* (wood), *R. officinalis* (leaf), *P. pyrifolia* (bark), *A. senticosus* (bark), *E. caryophllata* (leaf), and *E. annuus* (whole). The IC<sub>50</sub> values of these were below 60  $\mu$ g/mL.

Some spices (*O. officinalis*, *T. vulgaris*, and *E. caryophllata*) and green tea (*C. sinensis*) have been reported to inhibit glycation in vitro. The methanolic extracts of three spices were reported to inhibit, respectively,  $\sim 20\%$  at 1 mg/mL the



Figure 1. Relationship between glycation inhibition and antioxidative activity [lipid peroxidation inhibition (●), DPPH scavenging activity (▲), and ABTS decolorization (■)] of plant extracts.

Table 2. Antioxidative Activity of Plant Extracts

|                | $IC_{50}^{a}$ (µg/mL) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| plant          | lipid peroxidation    | ABTS                    | DPPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| no.            | inhibition            | decolorization          | scavenging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1              | 88 2 + 5 23ofahi      | $7.60 \pm 0.90$ lm      | $\frac{1}{1}$ $\frac{1}{10}$ |  |  |
| 2              | 8 00 + 1 /0i          | $1.00 \pm 0.70$ m       | $4.47 \pm 0.37$ K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 2              | $85.3 \pm 6.00$ fahi  | $19.8 \pm 0.13$ hi      | 11 7 +0 70ik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 4              | $58.2 \pm 2.78$ mbf   | $5.13 \pm 0.26$ lmn     | $16.8 \pm 0.76$ jk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 5              | 39 7 + 11 4hii        | 8 78 + 0 65             | $60.3 \pm 0.76$ jk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 6              | $112 \pm 8.06$ defa   | $14.4 \pm 1.19$ ik      | $68.4 \pm 0.21$ fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 7              | $126 \pm 2.81$ cdefa  | $17.9 \pm 0.52$ ii      | $182 \pm 6.01b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 8              | 130+ 3.30 cdef        | $80.9 \pm 5.56$         | 111 + 1.72de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 9              | 36.1 ± 1.29ii         | $2.75 \pm 0.89n$        | $20.6 \pm 1.92$ ik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 10             | $162 \pm 24.8$ bcd    | $125 \pm 1.06a$         | $146 \pm 14.3 \text{bc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 11             | $143 \pm 12.4$ cdef   | $15.0 \pm 1.00$ ik      | $59.9 \pm 5.00a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 12             | $72.2 \pm 14.1$ fahii | $14.3 \pm 1.04$ ik      | 91.9 ± 0.45ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 13             | 137 ± 20.0cdef        | $46.2 \pm 0.62 f$       | $137 \pm 0.00$ bc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 14             | 217 ± 39.0b           | $48.2 \pm 0.52 f$       | 94.4 ±0.30ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 15             | $132 \pm 4.73$ cdef   | 3.89 ± 0.89mn           | $4.75 \pm 0.05k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 16             | $126 \pm 5.23$ cdefg  | $20.2 \pm 3.31$ hi      | $55.2 \pm 1.27$ gh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 17             | 96.6 ± 3.50defghi     | $70.6 \pm 1.22d$        | $108 \pm 18.2$ de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 18             | 99.9 ± 2.30defghi     | $23.4 \pm 0.45h$        | $69.3 \pm 6.54$ fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 19             | 145 ± 22.1cde         | $61.0 \pm 3.07e$        | $129 \pm 3.20$ cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 20             | 183 ± 23.5bc          | $102 \pm 0.19b$         | $103 \pm 3.99e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 21             | 107 ± 2.35defgh       | $40.2 \pm 2.20$ g       | 91.6 ± 0.72ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 22             | 217 ± 20.0b           | $58.3 \pm 1.34e$        | $151 \pm 14.7 bc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 23             | $110 \pm 3.51$ defgh  | $37.3 \pm 0.39$ g       | $64.5 \pm 2.30g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 24             | $107 \pm 3.22 defgh$  | $12.7 \pm 1.21 \bar{k}$ | 33.3 ± 21.1ĥij                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 25             | $416 \pm 87.4a$       | 122 ± 3.94a             | 539 ± 21.7a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Ab             | $6.45 \pm 0.27 j$     | $1.97 \pm 0.07n$        | $64.5 \pm 0.11$ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Bc             | $16.2 \pm 0.00j$      | $3.91\pm0.47$ mn        | $24.5 \pm 1.25ijk$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| C <sup>d</sup> | $8.42 \pm 0.12j$      | $4.79\pm0.64$ mn        | $170 \pm 0.60b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

| Table 3.   | Total  | Polyphenol, | Flavonoid,   | and   | Ascorbate | Contents |
|------------|--------|-------------|--------------|-------|-----------|----------|
| (Milligram | ns per | Gram of Re  | esidue) of F | Plant | Extracts  |          |

| total polyphenol <sup>a</sup> | total flavonoid <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-ascorbic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $472.62 \pm 14.34d$           | 323.18 ± 3.95a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.00 \pm 0.00$ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 423.00 ± 15.89fg              | $186.31 \pm 7.90b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.05 \pm 0.00$ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 438.90 ± 7.62ef               | $92.74 \pm 5.93 f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.88 \pm 0.07 efg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $257.41 \pm 2.50h$            | $66.20 \pm 3.95$ j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.09 ± 0.14ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $502.57 \pm 14.34c$           | $41.06 \pm 3.95$ kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.02 \pm 0.00$ g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 114.97 ± 5.74lmn              | $150.00 \pm 0.00d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.12 \pm 0.01 fg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $460.45 \pm 2.92 de$          | $38.27 \pm 3.95$ klm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.00 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $138.01 \pm 8.12$ kl          | $144.41 \pm 3.95d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.34 \pm 0.32d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $532.89 \pm 5.45b$            | 113.69 ± 7.90e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.33 \pm 0.29 d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 187.12 ±11.14j                | $43.85 \pm 3.95$ kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.23 \pm 0.06$ fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 639.74 ± 2.25a                | $81.56 \pm 1.98$ gh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.83 \pm 0.59b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 195.95 ± 6.26j                | 112.29 ± 1.98e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.01 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $223.10 \pm 8.03i$            | $70.39 \pm 1.98$ ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.60 \pm 0.04 efg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 110.29 ± 4.26mn               | $31.28 \pm 1.98 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.79 ± 0.58c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 405.67 ± 3.09g                | $75.98 \pm 1.98$ hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.44 ± 1.91a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 148.23 ± 7.62k                | $45.25 \pm 5.93 k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.14 \pm 0.01$ fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $100.94 \pm 3.71n$            | $85.75 \pm 3.95$ fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.08 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 190.61 ± 12.91j               | $38.27 \pm 0.00$ kľm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.00 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 99.47 ± 1.70n                 | $35.47 \pm 0.00$ lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.66 ± 0.12efg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $132.18 \pm 6.36$ klm         | $110.89 \pm 0.00e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.32 \pm 0.14e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 95.12 ± 8.94no                | $42.46 \pm 1.98$ kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.71 \pm 0.05 efg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $132.33 \pm 3.72$ klm         | $161.17 \pm 0.00c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.01 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $222.13 \pm 4.46i$            | 78.77 ± 5.93ghi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.13 \pm 0.02 fg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $420.99 \pm 4.13$ fg          | $84.36 \pm 5.93 fgh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.04 \pm 0.00g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 73.11 ± 3.090                 | 29.89 ± 3.95m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.45 \pm 0.04 efg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | $\begin{array}{c} \text{total polyphenol}^{a} \\ 472.62 \pm 14.34d \\ 423.00 \pm 15.89fg \\ 438.90 \pm 7.62ef \\ 257.41 \pm 2.50h \\ 502.57 \pm 14.34c \\ 114.97 \pm 5.74lmn \\ 460.45 \pm 2.92de \\ 138.01 \pm 8.12kl \\ 532.89 \pm 5.45b \\ 187.12 \pm 11.14j \\ 639.74 \pm 2.25a \\ 195.95 \pm 6.26j \\ 223.10 \pm 8.03i \\ 110.29 \pm 4.26mn \\ 405.67 \pm 3.09g \\ 148.23 \pm 7.62k \\ 100.94 \pm 3.71n \\ 190.61 \pm 12.91j \\ 99.47 \pm 1.70n \\ 132.18 \pm 6.36klm \\ 95.12 \pm 8.94no \\ 132.33 \pm 3.72klm \\ 222.13 \pm 4.46i \\ 420.99 \pm 4.13fg \\ 73.11 \pm 3.090 \\ \end{array}$ | $\begin{array}{lll} \mbox{total polyphenol}^{a} & \mbox{total flavonoid}^{b} \\ \mbox{472.62} \pm 14.34d & \mbox{323.18} \pm 3.95a \\ \mbox{423.00} \pm 15.89fg & \mbox{186.31} \pm 7.90b \\ \mbox{438.90} \pm 7.62ef & \mbox{92.74} \pm 5.93f \\ \mbox{257.41} \pm 2.50h & \mbox{66.20} \pm 3.95j \\ \mbox{502.57} \pm 14.34c & \mbox{41.06} \pm 3.95kl \\ \mbox{114.97} \pm 5.74lmn & \mbox{150.00} \pm 0.00d \\ \mbox{460.45} \pm 2.92de & \mbox{38.27} \pm 3.95klm \\ \mbox{138.01} \pm 8.12kl & \mbox{14.44} \pm 3.95d \\ \mbox{532.89} \pm 5.45b & \mbox{13.66} \pm 7.90e \\ \mbox{187.12} \pm 11.14j & \mbox{43.85} \pm 3.95kl \\ \mbox{639.74} \pm 2.25a & \mbox{81.56} \pm 1.98gh \\ \mbox{195.95} \pm 6.26j & \mbox{112.29} \pm 1.98e \\ \mbox{223.10} \pm 8.03i & \mbox{70.39} \pm 1.98ji \\ \mbox{10.29} \pm 4.26mn & \mbox{31.28} \pm 1.98m \\ \mbox{405.67} \pm 3.09g & \mbox{75.98} \pm 1.98hi \\ \mbox{148.23} \pm 7.62k & \mbox{45.25} \pm 5.93k \\ \mbox{100.94} \pm 3.71n & \mbox{85.75} \pm 3.95fg \\ \mbox{190.61} \pm 12.91j & \mbox{32.77} \pm 0.00klm \\ \mbox{192.18} \pm 6.36klm & \mbox{110.89} \pm 0.00e \\ \mbox{95.12} \pm 8.94no & \mbox{42.46} \pm 1.98kl \\ \mbox{132.33} \pm 3.72klm & \mbox{161.17} \pm 0.00c \\ \mbox{222.13} \pm 4.46i & \mbox{78.77} \pm 5.93ghi \\ \mbox{420.99} \pm 4.13fg & \mbox{84.36} \pm 5.93fg \\ \mbox{73.11} \pm 3.090 & \mbox{28.9} \pm 3.95m \\ \end{tabular}$ |

<sup>*a*</sup> Expressed as mg of gallic acid equiv/g of dry weight of residue. Values within each column followed by the same letters are not significantly different (p < 0.05). <sup>*b*</sup> Expressed as mg of quercetin equiv/g of dry weight of residue. Values within each column followed by the same letters are not significantly different (p < 0.05).

<sup>*a*</sup> Concentration of plant extract residue required to inhibit 50% of the control calculated from linear regression equation in semilogarithmic manner. Values with different letters in a column are significantly different (*p* < 0.05). <sup>*b*</sup> A, L-ascorbic acid. <sup>*c*</sup> B, DL- $\alpha$ -tocopherol. <sup>*d*</sup> C, Trolox.

fluorescence formed by BSA and glucose (25). A boiled water extract of green tea was reported to inhibit  $\sim$ 50% at 100  $\mu$ g/mL the fluorescence formed by human serum albumin and glucose (6).

The edible parts of *A. cepa* and *F. esculentum* have been reported to exhibit a wide range of biological effects, including antioxidative, antimutagenic, and cardioprotective actions due to the high content of flavonoids (26, 27). However, their inedible parts have not been studied much. *I. religiosum* grows

wild in southern coastal areas and on the island of Cheju in Korea and has not been utilized industrially.

The formation of fluorescent lipid peroxidation products was suppressed by the addition of the plant extracts (**Table 2**). *I. religiosum* (bark) inhibited most potently the peroxidation comparable to L-ascorbic acid and Trolox, followed by *E. caryophllata* (leaf) and *I. religiosum* (wood). In the ABTS<sup>+</sup> radical cation assay, *C. sinensis* (leaf) was the most potent product, comparable to L-ascorbic acid, followed by *E. caryophllata* (leaf), *I. religiosum* (bark), *O. officinalis* (leaf), and *A. cepa* (skin). In the DPPH assay, *A. cepa* (skin) exhibited the most potent radical scavenging activity at an extent almost 5 times higher than that of DL- $\alpha$ -tocopherol. Following were *C. sinensis* 

Table 4. Composition of Nonvolatile Organic Acids in Plant Extracts<sup>a</sup>

| no. | acetic acid      | citric acid                         | succinic acid     | oxalic acid      | malic acid       | malonic acid    | total              |
|-----|------------------|-------------------------------------|-------------------|------------------|------------------|-----------------|--------------------|
| 1   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 2   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 3   | nd               | nd                                  | $201.29 \pm 3.50$ | nd               | $51.09 \pm 1.30$ | nd              | $252.38 \pm 5.11$  |
| 4   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 5   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 6   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 7   | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 8   | nd               | $10.81 \pm 2.30$                    | nd                | nd               | $45.11 \pm 3.36$ | nd              | $55.92 \pm 6.41$   |
| 9   | nd               | nd                                  | $15.81 \pm 2.19$  | nd               | nd               | nd              | $15.81 \pm 2.19$   |
| 10  | nd               | $2.85 \pm 0.13$                     | $103.06 \pm 3.31$ | nd               | nd               | $4.56 \pm 0.36$ | $110.47 \pm 4.90$  |
| 11  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 12  | nd               | nd                                  | $12.02 \pm 3.56$  | nd               | nd               | nd              | $12.02 \pm 3.56$   |
| 13  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 14  | nd               | $24.61 \pm 3.64$                    | nd                | nd               | nd               | nd              | $24.61 \pm 3.64$   |
| 15  | nd               | nd                                  | $227.01 \pm 5.91$ | $49.01 \pm 0.36$ | $14.14 \pm 0.24$ | nd              | $290.16 \pm 7.00$  |
| 16  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 17  | $44.33 \pm 5.64$ | nd                                  | $12.78 \pm 0.50$  | nd               | $17.22 \pm 0.73$ | nd              | $74.33 \pm 7.09$   |
| 18  | nd               | nd                                  | $18.14 \pm 4.48$  | nd               | nd               | nd              | $18.14 \pm 4.48$   |
| 19  | nd               | nd                                  | nd                | nd               | 110.98±11.79     | nd              | 110.98 ± 11.79     |
| 20  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 21  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 22  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 23  | nd               | nd                                  | nd                | nd               | nd               | nd              | nd                 |
| 24  | nd               | nd                                  | nd                | nd               | n.d.             | nd              | nd                 |
| 25  | nd               | $\textbf{272.99} \pm \textbf{9.56}$ | nd                | nd               | $68.32\pm4.08$   | nd              | $341.31 \pm 12.00$ |
|     |                  |                                     |                   |                  |                  |                 |                    |

<sup>a</sup> Data are expressed as mg/g dry weight of residue  $\pm$  SD (n = 3). nd, not detected.

(leaf), *F. esculentum* (hull), *O. officinalis* (leaf), and *E. caryophllata* (leaf). Spices such as *E. caryophllata* and *O. officinalis* and green tea (*C. sinensis*) have been well-known to possess antioxidaive activity (5, 25). The antioxidative activity of *I. religiosum* has never been reported.

Attempts to relate glycation inhibition with antioxidation have been reported. Several kinds of tea extracts showed protein glycation inhibitory activity and DPPH radical scavenging activity (6). Spice constituents scavenging free radicals inhibited protein glycation, but the order of potency was not exactly consistent (5). Garcinol isolated from *G. indica* fruit rind showed antioxidative and glycation inhibitory activities (4). However, analysis for statistical correlation between the two activities has not been reported.

The statistical significance of the association between the glycation inhibition and the antioxidation by the plant extracts was analyzed in our study. The IC<sub>50</sub> values for the glycation inhibition were significantly correlated with those of lipid peroxidation inhibition (r = 0.7592 and p = 0.0001), those of ABTS<sup>+</sup> antioxidation (r = 0.5010 and p = 0.0001), and those of DPPH radical scavenging effect (r = 0.7604 and p = 0.0001), respectively (**Figure 1**). The IC<sub>50</sub> for glycation inhibition was correlated significantly with all three IC<sub>50</sub> values for antioxidation (r = 0.7956 and p = 0.0001). These associations between the glycation inhibitory activity and the antioxidative activity by the plant extracts might support indirectly the suggestion that protein glycation generates free radicals (*14*) and that superoxide formation initiates protein glycation (*15*).

Most of the glycation inhibitory phytochemicals contained in plants or isolated from plants have been reported to be polyphenolic compounds. The active glycation inhibitory constituents of green tea have been regarded as polyphenols (28). Quercetin, eriodictyol, 5,6,4'-trihydroxy-7, 8,3'-trimethoxyflavone, and cirsilineol were isolated from *T. vulgaris* as glycation inhibitors (25). Garcinol, which is a polyisoprenylated benzophenone derivative and has phenolic hydroxyl groups, was isolated from *G. indica* fruit as a glycation inhibitor (4). The three most potent plants in our results contain high contents of polyphenols. A. *cepa* skin contains quercetin at 5000-12000 mg/kg of dry weight (29), *I. religiosum* bark contains quercitrin at 50000 mg/kg of dry weight (our unpublished data), and *F. esculentum* hull contains rutin at 130-350 mg/kg of dry weight (27). The potent glycation inhibitory activity of these plants might be related to their high content of polyphenols.

For common compounds responsible for the glycation inhibitory and antioxidative activities of the plant extracts, the contents of total polyphenol, total flavonoid, and ascorbic acid were determined (**Table 3**). Attempts to correlate statistically the levels of the common compounds with the glycation inhibitory and the antioxidative activities were less successful. Although correlation with total polyphenols was detected with glycation inhibition (r = -0.4955, p = 0.0118), lipid peroxidation (r =-0.4768, p = 0.0160), ABTS<sup>+</sup> (r = -0.6262, p = 0.0008), and DPPH (r = -0.4247, p = 0.0343), the other individual correlations were lower. It seems likely that the glycation inhibitory and antioxidative activities of the plant extracts are partly due to total polyphenol content, but solely due to common compounds such as total flavonoids and ascorbic acid.

In the glycation assay, chelating agents such as organic acids inhibit the reaction. The content of citric acid and other multibasic organic acids that commonly occur in plants was measured in the extracts (**Table 4**). The correlation of total organic acid level with the glycation inhibitory activity was not statistically significant. It seems likely that the glycation inhibitory activity of the extracts is not due to chelating agents such as organic acids.

The potent glycation inhibitory and antioxidative activities of *A. cepa* (skin), *I. religiosum* (bark and wood), and *F. esculentum* (hull) suggest their possible role in targeting diabetic complications and aging.

### LITERATURE CITED

 Vlassara, H.; Bucala, R.; Striker, L. Biology of disease: Pathogenic effects of advanced glycosylation: Biochemical, biologic, and clinical implications for diabetes and aging. *Lab. Invest.* **1994**, *70*, 138–151.

- (2) Thorpe, S. R.; Baynes, J. W. Role of the Maillard reaction in diabetes mellitus and diseases of aging. *Drugs Aging* 1996, 9, 69–77.
- (3) Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: a review. *Diabetologia* 2001, 44, 129–146.
- (4) Yamaguchi, F.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Antioxidative and anti-glycation activity of garcinol from *Garcinia indica* fruit rind. J. Agric. Food Chem. 2000, 48, 180–185.
- (5) Oya, T.; Osawa, T.; Kawakishi, S. Spice constituents scavenging free radicals and inhibiting pentosidine formation in a model system. *Biosci., Biotechnol., Biochem.* **1997**, *61*, 263–266.
- (6) Kinae, N.; Shimoi, K.; Masumori, S.; Harusawa, M.; Furugori, M. Suppression of the formation of advanced glycosylation products by tea extracts. In *Food Phytochemicals for Cancer Prevention II*; Ho, C.-T., Ed.; ACS Symposium Series 547; American Chemical Society: Washington, DC, 1994; pp 68– 75.
- (7) Kinae, N.; Masumori, S.; Nagai, R.; Shimoi, K. Inhibition of Maillard reaction by tea extract in streptozotocin-treated rats. In *Maillard Reactions in Chemistry, Food, and Health*; Labuza, T. P., Reineccius, G. A., Monnier, V., O'Brien, J., Baynes, J., Eds.; Royal Society of Chemistry: Cambridge, U.K., 1994; pp 369–374.
- (8) Suarez, G.; Rajaram, R.; Oronsky, A. L.; Gawinowicz, M. A. Nonenzymatic glycation of bovine serum albumin by fructose (fructation), comparison with the Maillard reaction initiated by glucose. J. Biol. Chem. **1989**, 264, 3674–3679.
- (9) Perry, R. E.; Swamy, M. S.; Abraham, E. C. Progressive changes in lens crystallin glycation and high-molecular-wight aggregate formation leading to cataract development in streptozotocindiabetic rats. *Exp. Eye Res.* **1987**, *44*, 269–282.
- (10) Wolff, S. P.; Jiang, Z. Y.; Hunt, J. V. Protein glycation and oxidative stress in diabetes mellitus and aging. *Free Radical Biol. Med.* **1991**, *10*, 339–352.
- (11) Kristal, B. S.; Yu, B. P. An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J. *Geron. Biol. Sci.* **1992**, *47*, B107–B114.
- (12) Chappey, O.; Dosquet, C.; Wautier, J.-L. Advanced glycation end products, oxidant stress and vascular lesions. *Eur. J. Clin. Invest.* **1997**, *27*, 97–108.
- (13) Miyata, T.; Wada, Y.; Cai, Z.; Iida, Y.; Horie, K.; Yasuda, Y.; Maeda, K.; Kurokawa, K.; van Ypersele de Strihou, C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. *Kidney Int.* **1997**, *51*, 1170–1181.
- (14) Yim, M. B.; Yim, H. S.; Lee, C.; Kang, S. O.; Chock, P. B. Protein glycation: creation of catalytic sites for free radical generation. *Ann. N. Y. Acad. Sci.* **2001**, *928*, 48–53.
- (15) Nishikawa, T.; Edelstein, D.; Du, X. L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.; Yorek, M. A.; Beebe, D.; Oates, P. J.; Hammes, H. P.; Giardino, I.; Brownlee, M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. *Nature* **2000**, *404*, 787–790.
- (16) McPherson, I. D.; Shilton, B. H.; Walton, P. J. Role of fructose in glycation and cross-linking of proteins. *Biochemistry* **1988**, 27, 1901.

- (17) Shimasaki, H. Assay of fluorescent lipid peroxidation products. In *Methods in Enzymology. Vol. 233, Oxygen Radicals in Biological Systems, Part C*; Packer, L., Ed.; Academic Press: San Diego, CA, 1994.
- (18) Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radical Biol. Med.* **1999**, 26, 1231–1237.
- (19) Lee, S. K.; Mbwambo, Z. H.; Chung, H.-S.; Luyengi, L.; Games, E. J. C.; Mehta, R. G.; Kinghorn, A. D.; Pezzuto, J. M. Evaluation of the antioxidant potential of natural products. *Comb. Chem. High Throughput Screen.* **1998**, *1*, 35–46.
- (20) Singleton, V. L.; Rossi, J. A. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. *Am. J. Enol. Vitic.* **1965**, *16*, 144–158.
- (21) Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M. A.; Aruoma, O. I. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of *Cassia fiatula*. J. Agric. Food Chem. 2002, 50, 5042–5047.
- (22) Dennison, D. B.; Brawley, T. G.; Hunter, G. L. K. Rapid highperformance liquid chromatographic determination of ascorbic acid and combined ascorbic acid-dehydroascorbic acid in beverages. J. Agric. Food Chem. 1981, 29, 927–929.
- (23) Bissell, P.; Ewart, A.; Santippawan, W. Loading concentrations for tarraric acid malic acid for single column HPLC organic acid analysis. *Am. J. Enol. Vitic.* **1989**, *40*, 316–319.
- (24) SAS Users' Guide; Statistical Analysis Systems Institute: Cary, NC, 1998.
- (25) Morimitsu, Y. Protein glycation inhibitors from thyme (*Thymus vulgaris*). Biosci., Biotechnol., Biochem. **1995**, 59, 2018–2021.
- (26) Cook, N. C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. *Nutr. Biochem.* **1996**, 7, 66–76.
- (27) Dietrych-Szostak, D.; Oleszek, W. Effect of processing on the flavonoid content in buckwheat (*Fagopyrum esculentum* Moench) grain. J. Agric. Food Chem. **1999**, 47, 4384–4387.
- (28) Kinae, N.; Yamashita, M.; Esaki, S.; Kamiya, S. Inhibitory effects of tea extracts on the formation of advanced glycosylation products. In *The Maillard Reaction in Food Processing, Human Nutrition and Physiology*; Finot, P. A., Aeschbacher, H. U., Hurrell, R. F., Liardon, R., Eds.; Birkhauser: Basel, Switzerland, 1990; pp 221–226.
- (29) Hertog, M. G. L.; Hollman, P. C. H.; Katan, M. B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. *J. Agric. Food Chem.* **1992**, *40*, 2379–2383.

Received for review August 2, 2002. Revised manuscript received December 30, 2002. Accepted December 30, 2002. This work was supported by Grant R04-2001-000-00236-0 from the Korea Science and Engineering Foundation.

JF020850T